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1. Introduction

Topologically massive gravity [1] — (2+1)-dimensional Einstein gravity supplemented with

a Chern-Simons term for the spin connection — provides a fascinating playground for

exploring higher-derivative gravity. In contrast to the topological character of ordinary

Einstein gravity in three dimensions, topologically massive gravity has a local degree of

freedom, a parity-violating massive spin two graviton that can be described by a single

indexless “scalar” field. With the addition of a negative cosmological constant Λ = −1/ℓ2,

surprising new features emerge [2]: for instance, the components of curvature perturbations

propagate with different, chirality-dependent masses.

Topologically massive AdS gravity may also provide a useful model in which to explore

the AdS/CFT correspondence. The conformal boundary of a three-dimensional asymp-

totically anti-de Sitter spacetime is a flat two-dimensional cylinder, and the asymptotic

symmetries are described by a pair of Virasoro algebras [3]. The resulting two-dimensional

conformal symmetry can be very powerful. In pure Einstein gravity, for example, although

the boundary conformal field theory is not known [4, 5], the classical central charges and

conformal weights are sufficient to determine the BTZ black hole entropy [6, 7] and even the
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spectrum of Hawking radiation [8]. In topologically massive gravity, it was shown several

years ago that the central charges of the “left” and “right” Virasoro algebras split [9 – 11]:

c± =
3ℓ

2G

(

1 ±
1

µℓ

)

, (1.1)

where the mass parameter µ is fixed by the Chern-Simons coupling. The classical contri-

butions to conformal weights are also shifted, leading to interesting modifications of black

hole thermodynamics [9, 10, 12]. Moreover, at µℓ = ±1 the boundary theory becomes

chiral. Since the sum over topologies in three-dimensional gravity may require a chiral

splitting [13], such a theory could be of considerable interest.

Unfortunately, this model appears to have a fundamental sickness. With the usual

sign for the gravitational constant, the massive excitations of topologically massive gravity

carry negative energy [1]. In the absence of a cosmological constant, one can simply flip

the sign of G, but if Λ < 0, this will give a negative mass to the BTZ black hole [14]. The

existence of a stable ground state is thus in doubt. The possibility of a supersymmetric

extension of the theory [15] suggests the existence of a stable superselection sector, but

this sector appears to exclude black holes.

Recently, Li, Song, and Strominger proposed a possible cure [16]. At the chiral point,

a family of eigenstates of the Virasoro generator L0 representing massive excitations disap-

pears, and Li et al. suggested that the massive gravitons might no longer be present. Un-

fortunately, a different family of finite-energy eigenstates of L0 has been found [17], which

violate the standard Fefferman-Graham asymptotic conditions [18] but are still asymptot-

ically anti-de Sitter; and worse, a complete set of finite-energy asymptotically AdS wave

packets also exists, even at the chiral coupling [2].

A loophole remains, however. The computations of [16, 17, 2] — and, indeed, those of

virtually every paper discussing this model — are based on classical perturbation theory,

expanding the metric in small fluctuations around AdS and keeping only lowest order terms.

The full field equations, on the other hand, are highly nonlinear, and it is conceivable that

new features could emerge nonperturbatively.

A general nonperturbative solution of the field equations of topologically massive grav-

ity seems distant, but we can learn a great deal by analyzing the constraints. For the case

of a vanishing cosmological constant, such an analysis was first performed by Deser and

Xiang [19], and further amplified by Buchbinder et al. [20]. The formalism is very compli-

cated, in part because of the presence of third derivatives and second class constraints, but

the results ultimately confirm the existence of a single propagating degree of freedom. For

the asymptotically anti-de Sitter case, the literature is currently inconsistent: Park [21]

appears to find more than one degree of freedom (one “for each internal index”), while

Grumiller et al. [22] find one configuration space degree of freedom, but consider only the

chiral coupling.

In this paper, I will show that a new choice of variables greatly simplifies the constraint

analysis, allowing an elegant expression of the constraint algebra and a simple counting of

degrees of freedom. I confirm the existence of a single propagating degree of freedom at all
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values of the couplings, and rederive the central charges (1.1) from an explicit computation

of the algebra of asymptotic symmetries.

2. Topologically massive AdS gravity

In the first order formalism of (2+1)-dimensional gravity, the fundamental variables are

the triad ea = ea
µdxµ and the spin connection ωa = 1

2
ǫabcω

bc
µdxµ. The Einstein-Hilbert

action takes the form1

IEH[e, ω] = 2

∫
[

ea ∧

(

dωa +
1

2
ǫabcω

b ∧ ωc

)

+
1

6

1

ℓ2
ǫabce

a ∧ eb ∧ ec

]

, (2.1)

where e and ω can be treated as independent variables. The variation of ω yields the

torsion constraint

Ta = Dωea = dea + ǫabcω
b ∧ ec = 0, (2.2)

while the variation of e gives the Einstein field equations.

An additional Chern-Simons term can be written for the spin connection,

ICS[ω] =

∫
[

ωa ∧

(

dωa +
1

3
ǫabcω

b ∧ ωc

)]

. (2.3)

If e and ω are varied independently, the sum of the Einstein-Hilbert and Chern-Simons

actions gives a model whose solutions are identical to those of ordinary Einstein gravity [23],

although with a different symplectic structure that may have implications for the quantum

theory [24]. If the torsion constraint (2.2) is imposed, however, one obtains a higher-

derivative theory, topologically massive gravity, with

ITMG[e] = IEH[e, ω(e)] +
1

µ
ICS[ω(e)]. (2.4)

To simplify this action, let us define a new connection

Aa = ωa + µea, (2.5)

whose Chern-Simons action is

1

µ
ICS[A] =

1

µ
ICS[ω] + IEH +

∫
[

µea ∧ Ta +
1

3

(

µ2 −
1

ℓ2

)

ǫabce
a ∧ eb ∧ ec

]

.

Rather than explicitly writing ω as a function of e, we can impose the torsion constraint

with a Lagrange multiplier, as suggested in [19, 25]. Then

ITMG =
1

µ
ICS[A] +

∫

[

βa
(

DAea − µǫabce
b ∧ ec

)

− αǫabce
a ∧ eb ∧ ec

]

, (2.6)

where βa = βa
µdxµ is a Lagrange multiplier for the torsion constraint and

α =
1

3

(

µ2 −
1

ℓ2

)

.

1I choose units 16πG = 1, a metric of signature (− + +), and a cosmological constant Λ = −1/ℓ2, and

set ǫ012 = 1 (so ǫ012 = −1).
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Note that the chiral coupling occurs at α = 0; this is the only place in which the relationship

of µ and ℓ appears in this formulation.

The classical equations of motion may be obtained by varying A, β, and e:

δA : Fa +
µ

2
ǫabcβ

b ∧ ec = 0 with Fa = dAa +
1

2
ǫabcA

b ∧ Ac

δβ : Ta = DAea − µǫabce
b ∧ ec = 0

δe : Ba = DAβa − 2µǫabcβ
bec − 3αǫabce

bec = 0. (2.7)

I show in the appendix that these are equivalent to the standard field equations for topo-

logically massive AdS gravity, and that they determine the Lagrange multiplier β to be

βa
µ = −

2

µ

(

Ra
µ +

2

ℓ2
ea

µ +
3α

2
ea

µ

)

β = βa
µea

µ = −
9α

µ
. (2.8)

3. Poisson brackets and constraints

From the action (2.6), we can now read off the terms involving time derivatives:

ITMG =

∫

d3xǫij

[

−
1

µ
Aa

i∂tAaj − βa
i∂teaj

]

+ . . . (3.1)

The canonical Poisson brackets are thus
{

Aa
i, A

b
j

}

=
µ

2
ηabǫij

{

ea
i, β

b
j

}

= ηabǫij . (3.2)

The factor of 1/2 in the first bracket can be obtained from Dirac brackets, or more simply by

recognizing that Ax and Ay are conjugate and integrating by parts. This diagonalization of

the Poisson brackets is one of the main simplifications coming from our choice of variables.

The time components Aa
t, ea

t, and βa
t appear in the action without time derivatives,

and can be considered Lagrange multipliers. The corresponding constraints are just the

relevant components of the classical equations of motion:

Ja = −
2

µ
ǫij

(

Faij +
µ

2
ǫabcβ

b
ie

c
j

)

Ta = −ǫij
(

Dieaj − µǫabce
b
ie

c
j

)

Ba = −ǫij
(

Diβaj − 2µǫabcβ
b
ie

c
j − 3αǫabce

b
ie

c
j

)

. (3.3)

It is convenient to “smear” the constraints, integrating them against vectors. More pre-

cisely, let us define

J [ξ] =

∫

Σ

d2x ξaJa + QJ [ξ]

T [ξ] =

∫

Σ

d2x ξaTa + QT [ξ]

B[ξ] =

∫

Σ

d2x ξaBa + QB[ξ], (3.4)
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where QJ , QT , and QB are the boundary terms needed to make the constraints differ-

entiable [3]. For now, we shall assume that the parameters ξa fall off rapidly enough at

infinity that we can freely integrate by parts and ignore boundary terms; these will be

restored below in section 6. The Poisson brackets of these generators with the canonical

variables {A, e, β} are now easy to compute, and are displayed explicitly in the appendix.

The constraints {J, T,B} should generate the full group of symmetries of the ac-

tion (2.6), including diffeomorphism invariance. For (2+1)-dimensional Einstein gravity, it

is known that an appropriate combination of the “gauge” constraints with field-dependent

parameters does, indeed, generate diffeomorphisms on shell [23, 26, 27]. The same is true

here. Let ξµ be an arbitrary three-vector, and define

ξa = ea
µξµ, ξ̂a = βa

µξµ, ξ̃a = Aa
µξµ. (3.5)

Define a new combination H of the constraints by

H[ξ] = B[ξ] + T [ξ̂] + J [ξ̃]. (3.6)

A simple computation then shows that

{H[ξ],X} = −LξX + terms proportional to the equations of motion, (3.7)

where X is any of {A, e, β} and L denotes the Lie derivative.

4. The algebra of constraints

We next turn to the algebra of the constraints. We may first check that J [ξ] generates

local Lorentz transformations: a straightforward calculation shows that for any constraint

C[η],

{J [ξ], C[η]} = −C[ξ × η] with (ξ × η)a = ǫabcξbηc. (4.1)

The J [ξ] are thus first class constraints.

The remaining constraints are more complicated. We find that

{T [ξ], T [η]} = −
µ

2

∫

d2x ξaηb
(

ǫijeaiebj

)

{B[ξ], T [η]} = −
µ

2
J [ξ × η] + 2µT [ξ × η] +

µ

2

∫

d2x ξaηb
(

ǫijβaiebj − ηabǫ
ijβc

iecj

)

{B[ξ], B[η]} = 2µB[ξ × η] + 6αT [ξ × η] −
µ

2

∫

d2x ξaηb
(

ǫijβaiβbj

)

. (4.2)

The appearance on the right-hand side of terms that are not proportional to the constraints

can mean two things: either there are secondary constraints, or some of our constraints are

second class [28]. To distinguish the two possibilities, note first that ǫijeaiebj is zero only if

the triad is noninvertible, certainly not a restriction we wish to impose. Similarly, ǫijβaiβbj

and ǫijeaiβbj vanishes only if some components of βai are linearly dependent. From (2.8),

this is not generically true, holding only for “pure Einstein gravity” solutions.

– 5 –



J
H
E
P
1
0
(
2
0
0
8
)
0
7
8

On the other hand, the quantity

∆ = ǫijβc
iecj = ǫijβij

always vanishes classically, by virtue of the symmetry of βµν . We can therefore treat ∆ as

a secondary constraint,2 and obtain the further commutators

{T [ξ],∆} = −ǫijDi (ξaeaj) − µǫabc
(

ǫijeaiebj

)

ξc − ξaTa

{B[ξ],∆} = ǫijDi (ξ
aβaj) − 2µǫabc

(

ǫijβaiebj

)

ξc − 9αǫabc
(

ǫijeaiebj

)

ξc + ξaBa
{

∆(x),∆(x′)
}

= 0, (4.3)

along with the relation {J [ξ],∆} = 0 that we would expect from the role of J as a generator

of local Lorentz transformations.

Our task is now to diagonalize the Poisson brackets (4.2)–(4.3), to determine the first

and second class constraints. To do so, let us define ξ̂a to be such that

eaiξ̂
a = βaiξ

a,

and let

B̂[ξ] = B[ξ] + T [ξ̂]. (4.4)

The existence of ξ̂ is guaranteed by the invertibility of the triad; we will take advantage of

its nonuniqueness below. A straightforward computation then gives

{

B̂[ξ], T [η]
}

= −
µ

2
J [ξ × η] + 2µT [ξ × η]

−
µ

2

∫

Σ

d2x ξ · η ∆ − T
[

{T [η], ξ̂}
]

≈ 0

{

B̂[ξ], B[η]
}

= 2µB[ξ × η] −
µ

2
J [ξ̂ × η] + 2µT [ξ̂ × η] + 6αT [ξ × η]

+
µ

2

∫

Σ

d2x ξ̂ · η ∆ − T
[

{B[η], ξ̂}
]

≈ 0

{

B̂[ξ],∆
}

= − ǫabc
(

ǫijeaiebj

)

(

µξ̂c + 9αξc

)

− 2µǫabc
(

ǫijβaiebj

)

ξc

− ξ̂aTa + ξaBa −

∫

Σ

d2x′ Ta(x
′){∆(x), ξ̂a(x′)}, (4.5)

where ≈ means “weakly equal,” that is, “equal up to constraints.” The first two brackets

are weakly zero; if ξ̂ can be chosen so that the third is as well, then the B̂[ξ] will be first

class constraints.

To see that this is possible, we first use the invertibility of ea
µ to write

ξ̂a = eaµβbµξb + eatη, (4.6)

2Alternatively, we could treat the Hamiltonian as a second class constraint; as discussed in [29], the rank

of the brackets of the primary constraints would then no longer be constant, and the Dirac brackets would

become singular in some regions of phase space.
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where η is arbitrary. It is already evident that the last bracket in (4.5) can be made weakly

zero, since the right-hand side is linear in η. More explicitly, note that

ǫµνρea
µeb

νe
c
ρ = eǫabc

with e = det |ea
µ|, and therefore

ǫijea
ie

b
j = −eǫabcec

t, ǫijeb
j = −eǫabcea

iec
t.

Some simple manipulation then yields

{

B̂[ξ],∆
}

≈ −2µegttη + 2µe
(

βtc − βct
)

ξc − 2µe

(

β +
9α

µ

)

ectξc,

and we can clearly choose η so that the right-hand side vanishes. More than that, it is

evident from (2.8) that η = 0 on shell. In that case, ξ̂a is identical to the parameter

appearing in (3.6), and B̂[ξ] is essentially the generator of diffeomorphisms.

We now consider the remaining constraints, which we can take to be T a and ∆. It is

convenient to write T µ = T aea
µ. The Poisson brackets (4.2)–(4.3) then give

{

T i(x), T j(x′)
}

≈ −
µ

2
ǫijδ2(x − x′)

{

T i(x), T t(x′)
}

≈
{

T t(x), T t(x′)
}

≈ 0
{

T i(x),∆(x′)
}

≈ −
(

ǫijDj + 2µegti
)

δ2(x − x′)
{

T t(x),∆(x′)
}

≈ −2µegttδ2(x − x′). (4.7)

It is clear upon inspection that for any values of µ and α (except for the conformal limit

µ = 0), the matrix of Poisson brackets has a nonzero determinant. In fact, as I describe

in the appendix, it is not too hard to compute its inverse explicitly. Hence no further

combination of the {T a,∆} gives an additional first class constraint.

We thus have nine canonical pairs of variables (Aa
i, ea

i, and βa
i), six first class con-

straints (Ja and B̃a) , and four second class constraints (T a and ∆). Each first class

constraint eliminates two phase space degrees of freedom, while each second class con-

straint eliminates one [28]; we therefore have 18 − 12 − 4 = 2 degrees of freedom left, that

is, one canonical pair of free data, describing a single local excitation. While the values of µ

and ℓ, in the combination α, affect the algebra of constraints, no choice leads to a change in

the types of the constraints or a jump in the number of degrees of freedom. In particular,

for the chiral values µℓ = ±1, these results agree with [22], while in the asymptotically flat

limit ℓ → ∞ they go smoothly to the results of [19].

5. Asymptotic symmetries

Let us briefly recall a few features of the first-order formulation of (2+1)-dimensional

Einstein gravity with a negative cosmological constant [23, 26, 27]. The theory has six first

class constraints, which give a canonical representation of the underlying symmetries of

the theory, local Lorentz invariance and diffeomorphism invariance. The constraints can

– 7 –
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be combined to form two mutually commuting sets of three generators. Each set forms a

Virasoro algebra, and when evaluated at the asymptotic symmetries of anti-de Sitter space,

the algebras have classical central charges. These central charges, along with the classical

conformal weights, provide a powerful tool for investigating the boundary conformal field

theory.

For topologically massive AdS gravity, we also have two sets of first class constraints,

Ja and B̂a, which again reflect local Lorentz invariance and diffeomorphism invariance. In

general, though, we should not expect these to split into commuting “left” and “right”

sectors; interactions are likely to couple the left- and right-movers. Indeed, from (4.2),

the symmetry generators do not commute: the Poisson brackets of B̂ include a term

proportional to J .

To understand the central charges and conformal weights, though, it is enough to look

at a neighborhood of the AdS boundary. There, from (2.8) and (4.6),

ξ̂a = −
3α

µ
ξa. (5.1)

If we define

L±[ξ] = B̂[ξ] + a±J [ξ],

it is easy to check that

{L+[ξ], L−[η]} =
{

B̂[ξ] + a+J [ξ], B̂[η] + a−J [η]
}

= (2µ − a+ − a−)B̂[ξ × η] + (3α − a+a−)J [ξ × η]. (5.2)

The right-hand side of (5.2) will vanish if

a± = µ ±
1

ℓ
,

that is,

L±[ξ] = B̂[ξ] +

(

µ ±
1

ℓ

)

J [ξ]. (5.3)

The remaining Poisson brackets are then

{L±[ξ], L±[η]} = ∓2
ℓ
L±[ξ × η]

{L+[ξ], L−[η]} = 0. (5.4)

An added complication can arise if the parameters ξa are field-dependent: they may

then have nontrivial Poisson brackets with the L±, leading to additional terms in the alge-

bra (5.4). In particular, we saw earlier that the parameters characterizing diffeomorphisms

are of the form ξa = ea
µξµ. The algebra thus becomes

{L±[ξ], L±[η]} = L±

[

{L±[ξ], ea
i}η

i − {L±[η], ea
i}ξ

i ∓ 2
ℓ
(ξ × η)a

]

{L+[ξ], L−[η]} = L−

[

{L+[ξ], ea
i}η

i
]

− L+

[

{L−[η], ea
i}ξ

i
]

. (5.5)

Again, though, matters simplify when we consider only a small neighborhood of the AdS

boundary. It is clear that if we could find parameters ξ and ξ̄ such that {L+[ξ], ea
i} =

– 8 –
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{L−[ξ̄], ea
i} = 0, the extra terms in (5.5) would vanish. Globally, this is rarely possible,

but we can define asymptotic symmetries for which

{L+[ξ], ea
i} = −

(

∂iξ
a + ǫabc

(

ωbi +
1

ℓ
ebi

)

ξc

)

∼ 0

{

L−[ξ̄], ea
i

}

= −

(

∂iξ̄
a + ǫabc

(

ωbi −
1

ℓ
ebi

)

ξ̄c

)

∼ 0 (5.6)

at the AdS boundary.3 We shall see in the next section that these eliminate the extra

terms in the commutator of L+ and L− at the boundary.

Equation (5.6) is easy to solve. If we choose coordinates such that the leading terms

in the metric take the form

ds2 = ℓ2dρ2 + e2ρ
(

ℓ2dϕ2 − dt2
)

,

we find two families, labeled by functions f(ϕ + t/ℓ) and f̄(ϕ − t/ℓ):

ξ0
f =

ℓ

2
eρf ξ̄0

f̄
=

ℓ

2
eρf̄

ξ1
f = −

ℓ

2
∂ϕf ξ̄1

f̄
=

ℓ

2
∂ϕf̄

ξ2
f =

ℓ

2
eρf ξ̄2

f̄
= −

ℓ

2
eρf̄ . (5.7)

I have chosen a normalization such that the zero-modes of ξt and ξ̄t are positive and such

that

[ξf , ξg]
a = ξa

{f,g},
[

ξ̄f̄ , ξ̄ḡ

]a
= −ξ̄a

{f̄ ,ḡ},

where [ξ, η]µ = ξν∂νη
µ − ην∂νξµ is the ordinary commutator of (2+1)-dimensional vector

fields and {f, g} = f∂ϕg − g∂ϕf is the commutator of f and g viewed as one-dimensional

vector fields on the circle. Not surprisingly, the parameters (5.7) match those found in

ordinary Einstein gravity [26, 27], and agree to lowest order with the asymptotic AdS

Killing vectors found long ago by Brown and Henneaux [3].

Restricted to such transformations, the algebra (5.5) now becomes

{L+[ξf ], L+[ξg]} = L+ [[ξf , ξg]] + L+[χ(f, g)]
{

L−[ξ̄f̄ ], L−[ξ̄ḡ]
}

= L−

[

[ξ̄f̄ , ξ̄ḡ]
]

+ L−[χ(f̄ , ḡ)]
{

L+[ξf ], L−[ξ̄ḡ]
}

= −(B̂ + µJ)[χ(f, ḡ)] − J [χ̃(f, ḡ)], (5.8)

with

χ1(f, g) =
ℓ

4
∂ϕ (f∂ϕg − g∂ϕf) , χ0(f, g)= χ2(f, g) = 0

χ̃(f, g) =
1

4

(

f∂2
ϕg + g∂2

ϕf
)

, χ̃0(f, g) = χ̃2(f, g) = 0. (5.9)

We shall see in the next section that the terms involving χ and χ̃ give no contribution at

the AdS boundary.

3It is interesting to note that the covariant derivatives here are identical to those in the gauge formulation

of ordinary Einstein gravity [23, 26, 27].
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6. Boundary terms and central charges

Up to now, we have focused on the “bulk” contributions to the constraints. We must now

restore the boundary terms. Let us first recall a few general features [3, 30]. Consider a

theory of fields {φi} in n+1 dimensions, with gauge transformations labeled by parameters

ξ and generated by

G[ξ, φ] =

∫

Σ

dnxG[ξ, φ].

Up to boundary terms, these generators should satisfy the appropriate gauge algebra

{G[ξ, φ], G[η, φ]} = G[{ξ, η}, φ],

where {ξ, η} is the Lie bracket for the gauge group.

Now let us restore the boundary terms. Under a general variation of the fields,

δG[ξ, φ] =

∫

Σ

dnx
δG

δφi
δφi +

∫

∂Σ

dn−1xB[ξ, φ, δφ].

If the boundary term B is nonzero, G is said to not be “differentiable.” In particular, the

presence of B will lead to delta-function singularities in the Poisson brackets. It may be

possible to generalize the algebra to include such boundary singularities [31, 32], but it is

normally simpler to choose boundary conditions such that B is itself a total variation,

B[ξ, φ, δφ] = −δQ[ξ, φ].

The combination Ḡ[ξ, φ] = G[ξ, φ]+Q[ξ, φ] will then have a well-defined variation, with no

boundary terms, and it is easy to show that

{

Ḡ[ξ, φ], Ḡ[η, φ]
}

=

∫∫

dnx′ dnx
δG[ξ, φ]

δφi(x)

δG[η, φ]

δφj(x′)
{φi(x), φj(x

′)}

= Ḡ[{ξ, η}, φ] + K(ξ, η). (6.1)

The central term K(ξ, η) arises from boundary terms in the integrals, and need not

vanish. It is most easily evaluated by considering the algebra (6.1) for the “vacuum”

configuration, for which the boundary charges Q vanish; the right-hand side of (6.1) then

consists solely of the central term.

To apply this general formalism to our case, we must first return to (4.1) and (4.2)

and keep track of any boundary terms. A straightforward calculation yields

{J [ξ], J [η]} = · · · +
2

µ

∫

∂Σ

ξaDϕηadϕ

{J [ξ], T [η]} = · · · −

∫

∂Σ

(ξ × η)ae
a
ϕdϕ

{J [ξ], B[η]} = · · · −

∫

∂Σ

(ξ × η)aβ
a
ϕdϕ

{T [ξ], T [η]} = . . .

{B[ξ], T [η]} = · · · +

∫

∂Σ

[ξaDϕηa + 2µ(ξ × η)ae
a
ϕ] dϕ

{B[ξ], B[η]} = · · · +

∫

∂Σ

(ξ × η)a (2µβa
ϕ + 6αea

ϕ) dϕ, (6.2)
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where the omitted bulk terms are all proportional to the constraints, and vanish weakly.

For asymptotically anti-de Sitter boundary conditions, we see from (2.8) that βa = −3α
µ

ea

and ξ̂a = −3α
µ

ξa at the boundary. Some simple algebra then gives

{L±[ξ], L±[η]} = · · · ±
4

ℓ

∫

∂Σ

[(

1 ±
1

µℓ

)

ξaDϕηa +
3α

µ
(ξ × η)aeaϕ

]

dϕ

= · · · ±
4

ℓ

(

1 ±
1

µℓ

)
∫

∂Σ

ξa

[

∂ϕηa + ǫabc

(

ωb
ϕ ±

1

ℓ
eb

ϕ

)

ηc

]

dϕ

{L+[ξ], L−[η]} = . . . . (6.3)

Evaluated at the AdS “vacuum” state, the right-hand sides of these expressions are the

central terms K±.

If our asymptotic symmetries (5.7) were exact — that is, if (5.6) were satisfied exactly,

and not just asymptotically — then the integrands on the right-hand side of (6.3) would

vanish. But the symmetries are not quite exact, and a simple calculation shows that

{L+[ξf ], L+[ξg]} = · · · +
ℓ

32πG

(

1 +
1

µℓ

)
∫

∂Σ

(

∂ϕf∂2
ϕg − ∂ϕg∂2

ϕf
)

dϕ

{

L−[ξ̄f̄ ], L−[ξ̄ḡ]
}

= · · · −
ℓ

32πG

(

1 −
1

µℓ

)
∫

∂Σ

(

∂ϕf̄∂2
ϕḡ − ∂ϕḡ∂2

ϕf̄
)

dϕ, (6.4)

where I have restored the factors of 16πG. These are precisely the central terms for two

Virasoro algebras with central charges

c± =
3ℓ

2G

(

1 ±
1

µℓ

)

,

matching the results (1.1) that had been previously obtained using very different meth-

ods [9 – 11].

Finally, let us directly evaluate the boundary terms QL± . Here we can use some results

from pure Einstein gravity, where the same problem was discussed in [26, 27]. Note first

that from (3.3) and (5.3), the boundary terms in the variation of L± are

δL±[ξ] = · · · −

∫

∂Σ

[

ξaδβaϕ + ξ̂aδeaϕ +
2

µ

(

µ ±
1

ℓ

)

ξaδAaϕ

]

dϕ

= · · · −

∫

∂Σ

ξµ

[

ea
µδβaϕ + βa

µδeaϕ +
2

µ

(

µ ±
1

ℓ

)

ea
µδAaϕ

]

dϕ. (6.5)

As before, anti-de Sitter boundary conditions require that βa = −3α
µ

ea, and a bit of algebra

reduces (6.5) to

δL±[ξ] = · · · −

∫

∂Σ

ξµ

[

−
6α

µ
ea

µδeaϕ + 2

(

1 ±
1

µℓ

)

ea
µδAaϕ

]

dϕ

= · · · − 2

(

1 ±
1

µℓ

)
∫

∂Σ

ξµea
µ δ

(

ωaϕ ±
1

ℓ
eaϕ

)

dϕ. (6.6)

We now adopt the boundary conditions of [26, 27], which translate to

ωa
t =

1

ℓ2
ea

ϕ, ωa
ϕ = ea

t, δea
ρ = 0,
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and note that for our asymptotic symmetries, ξϕ = ±1
ℓ
ξt. The variation (6.6) is thus

δL±[ξ] = · · · − 2

(

1 ±
1

µℓ

)
∫

∂Σ

[

ξt

(

ea
t ±

1

ℓ
ea

ϕ

)

+ ξρea
ρ

]

δ

(

eat ±
1

ℓ
eaϕ

)

dϕ

= · · · −

(

1 ±
1

µℓ

)

δ

∫

∂Σ

[

ξt

(

ea
t ±

1

ℓ
ea

ϕ

)

+ 2ξρ ea
ρ

](

eat ±
1

ℓ
eaϕ

)

dϕ,

and the L± are thus differentiable if we add boundary terms

Q±[ξ] =
1

16πG

(

1 ±
1

µℓ

)

δ

∫

∂Σ

[

ξt

(

ea
t ±

1

ℓ
ea

ϕ

)

+ 2ξρ ea
ρ

] (

eat ±
1

ℓ
eaϕ

)

dϕ. (6.7)

These boundary terms are identical to those of ordinary Einstein gravity, except for

the prefactors of 1 ± 1
µℓ

. That is,

QTMG

± [ξ] =

(

1 ±
1

µℓ

)

QEinstein

± [ξ], (6.8)

in agreement with [9, 10]. Further, we can now verify the claim in the preceding section

that the χ and χ̃ terms in (5.9) are irrelevant at the boundary. Indeed, these terms only

appear in (6.7) in the form χρ(gρt±
1
ℓ
gρϕ), and vanish by virtue of our boundary conditions.

7. Chirality

It has recently been argued that topologically massive AdS gravity is chiral at the critical

coupling µℓ = ±1 [33]. In the present context, this feature can be understood as follows.

Consider first a generic coupling, and let ξµ be a vector field that satisfies the fall-off

conditions (5.7) but is nonzero at the boundary. From (6.4), the constraints L±[ξ] are

no longer first class: their Poisson brackets are not weakly zero. Constraints that are not

first class do not generate gauge transformations, but rather determine asymptotic symme-

tries [34]. Hence some configurations that are formally diffeomorphic will nevertheless be

physically inequivalent — they will differ by a symmetry rather than a gauge equivalence.

As a consequence, new “would-be pure gauge” degrees of freedom appear at the boundary,

which are conjecturally the source of the degrees of freedom of the black hole [4, 35, 36].

If µℓ = 1, on the other hand — or, by an obvious extension, µℓ = −1 — it is apparent

from (6.4) and (6.7) that c− and Q− vanish. Thus L−[ξ] remains first class even at the

boundary, and one chirality of diffeomorphisms extends to the boundary as a true gauge

invariance. This eliminates one chiral sector of the “massless gravitons” discussed in [16].

The remaining asymptotic symmetry group consists of only one copy of the Virasoro alge-

bra, and the boundary theory is thus chiral.

Note, however, that this argument does not eliminate bulk excitations that are not

diffeomorphic to zero in the interior. In particular, the linearized excitations of [2] and [37]

yield solutions with nonconstant curvature. No diffeomorphism, whether or not it extends

to the boundary, can remove such excitations.
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8. Conclusions

This work has, first of all, established the existence of a local degree of freedom in topologi-

cally massive AdS gravity at all values of the couplings. In particular, I confirm the results

of [22] for the chiral coupling µℓ = ±1. The constraint analysis presented here is, in a sense,

complementary to the perturbative analysis of [2, 37]. Those papers show that weak field

solutions exist and remain well-behaved at the AdS boundary, but cannot address effects

beyond the weak field approximation, while the present analysis is fully nonperturbative,

but does not address boundary behavior. Since the weak field perturbations have negative

energy (relative to the black hole), these results together provide a strong indication that

the theory is unstable.

On the other hand, this work also confirms that the boundary central charges of

topologically massive AdS gravity are shifted, and that at the chiral coupling, one of the two

central charges vanishes. This presents a bit of a puzzle for the AdS/CFT correspondence:

the central charge measures the number of states in the dual conformal field theory, and

the vanishing of a central charge should mean, in some sense, that some fields disappear.

Note, though, that the total central charge, c+ +c−, is independent of µ; the vanishing

of c− at µℓ = 1 is compensated by an increase in c+. The same behavior can be seen

in the boundary conformal weights: by (6.7), when c− and Q− vanish, Q+ doubles. For

the BTZ black hole, this is reflected in the fact that all solutions are extremal at the

chiral coupling [14, 16], while the entropy nevertheless remains independent of µ. How this

feature is manifested in the bulk — where the constraint algebra, at least, shows no special

behavior as couplings vary — remains a mystery.

The value of the total central charge also presents a second puzzle: it is the same

for topologically massive gravity as it is for ordinary Einstein gravity. The counting of

states via the Cardy formula will thus match the results of Einstein gravity, which are

already sufficient to account for for the BTZ black hole entropy; we will see no additional

contribution from the “massive graviton” at any value of the coupling constant. This

should not really be such a surprise, though: the classical contribution (1.1) to the central

charge is really of order O(1/~), while an ordinary propagating field contributes O(1). This

suggests that the classical Poisson bracket analysis of the boundary conformal field theory

might not capture enough information to tell us about the massive graviton degrees of

freedom, which may only appear at higher orders in ~.

Can chiral topologically massive gravity be saved? The negative-energy weak field

excitations of [2] can be built from compactly supported initial data — that is, they repre-

sent arbitrarily small and arbitrarily localized perturbations, which cannot be excluded by

boundary conditions in any obvious way. The constraint analysis developed here further

shows that these perturbations represent the “right amount” of initial data, one free phase

space degree of freedom per point. It remains conceivable, however, that higher order cor-

rections to the weak field solutions violate Fefferman-Graham boundary conditions, or lead

to a finite lower bound to the negative energies that appear perturbatively. Unfortunately,

the one known positive energy theorem for topologically massive AdS gravity, which follows

from the existence of a supersymmetric extension, goes in the wrong direction [15, 38]: with
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the sign choice for which the black hole has positive mass, the energy of local excitations

is strictly nonpositive. Nevertheless, a more detailed investigation of boundary conditions

beyond first order perturbation theory could be of interest.
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A. Details of some calculations

This appendix contains additional details of some calculations.

A.1 Classical equations of motion

The first-order equations of motion (2.7) in the variables {A, e, β} are equivalent to the

standard field equations for topologically massive gravity. To see this, note initially that

the second equation in (2.7) is simply the torsion constraint (2.2), with the spin connection

ω defined in terms of A and e by (2.5). This constraint determines the spin connection as

a function of the triad. The first equation in (2.7) then becomes, in component form,

ǫabcFaµν = −
µ

4

(

βb
µec

ν − βb
νe

c
µ − βc

µeb
ν + βc

νe
b
µ

)

Faµν = Raµν +
µ2

2
ǫabce

b
µec

ν with Ra = dωa +
1

2
ǫabcω

b ∧ ωc.

Contracting with ec
ν , and noting that ec

νǫabcRaµν = 1

2
Rb

µ (where Rb
µ is the Ricci tensor),

we find that

βa
µ = −

2

µ

(

Ra
µ −

1

4
ea

µR +
µ2

2
ea

µ

)

.

Upon inserting this expression into the last equation in (2.7), a little algebra yields

Gµ
σ −

1

ℓ2
δµ
σ −

1

µ
ǫµνρ∇ν

(

Rρσ −
1

4
gρσR

)

= 0, (A.1)

the usual field equations for topologically massive AdS gravity. Contraction gives R =

−6/ℓ2, which implies in turn that

βa
µ = −

2

µ

(

Ra
µ +

2

ℓ2
ea

µ +
3

2
αea

µ

)

β = βa
µea

µ = −
9

µ
α,

which we can recognize as equation (2.8).
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A.2 Poisson brackets of the constraints

The Poisson brackets of the smeared constraints {J [ξ], T [ξ], B[ξ]} with with the canonical

variables {A, e, β} are easily computed from the fundamental brackets (3.1). One finds

{J [ξ], Aa
i} = −Diξ

a

{J [ξ], ea
i} = −ǫa

bce
b
iξ

c

{J [ξ], βa
i} = −ǫa

bcβ
b
iξ

c

{T [ξ], Aa
i} = −

µ

2
ǫa

bce
b
iξ

c

{T [ξ], ea
i} = 0

{T [ξ], βa
i} = −Diξ

a + 2µǫa
bce

b
iξ

c

{B[ξ], Aa
i} = −

µ

2
ǫa

bcβ
b
iξ

c

{B[ξ], ea
i} = −Diξ

a + 2µǫa
bce

b
iξ

c

{B[ξ], βa
i} = 2µǫa

bcβ
b
iξ

c + 6αǫa
bce

b
iξ

c, (A.2)

where D is the gauge-covariant exterior derivative for the connection A.

A.3 Inverting the second class constraints

In section 4, it was shown that the constraints {T a,∆} were second class, that is, that

the matrix of their Poisson brackets was nonsingular. Here I compute the inverse of that

matrix explicitly. Let us write TA = (T a,∆), and define

KAB(x, x′) =
{

TA(x), TB(x′)
}

.

From equations (4.2) and (4.3), we have

Kab(x, x′) = −ǫabcucδ
2(x − x′)

Ka∆(x, x′) = −ǫjkea
j(x)∂kδ2(x − x′) + 4uaδ2(x − x′)

K∆a(x, x′) = ǫjk∂j

(

ea
kδ

2(x − x′)
)

− 4uaδ2(x − x′)

K∆∆(x, x′) = 0, (A.3)

where I define

ua = −
µ

4
ǫabcǫ

ijeb
ie

c
j, P a

b = δa
b −

uaub

u2
.

We wish to find the inverse kernel K−1
AB , which should satisfy

∫

d2u
[

K−1

ab (x, u)Kbc(u, x′) + K−1
a∆

(x, u)K∆c(u, x′)
]

= δc
aδ

2(x − x′)
∫

d2u
[

K−1
ab (x, u)Kb∆(u, x′)

]

=

∫

d2u
[

K−1
∆b (x, u)Kbc(u, x′)

]

= 0
∫

d2u
[

K−1
∆b (x, u)Kb∆(u, x′)

]

= δ2(x − x′) (A.4)
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A tedious but straightforward calculation gives

K−1
∆b (x, x′) = −K−1

b∆ (x, x′) =
1

4

ub

u2
δ2(x − x′)

K−1

ab (x, x′) = −ǫabc
uc

u2
δ2(x − x′)

+
1

2µ

[

ua

u2
(x)

(

Pb
cec

j
)

(x′) +
ub

u2
(x′)

(

Pa
cec

j
)

(x)

]

∂jδ
2(x − x′). (A.5)

Checking (A.4) is now fairly easy, if one notes that

uae
a
i = 0, ǫjkea

k =
2

µ
ǫabceb

juc.

The inverse kernel K−1
AB is clearly nonsingular unless u2 = 0. But it is easy to check that

u2 ∼ det |gij |, so this can only occur for singular metrics.
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